Change in stacking-fault energy with Mn content and its influence on the damping capacity of the austenitic phase in Fe-high Mn alloys

JOONG-HWAN JUN*

Research Institute of Iron and Steel Technology, Yonsei University, Seoul 120-749, Korea E-mail: jhjun@bubble.yonsei.ac.kr

CHONG-SOOL CHOI Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea E-mail: phaselab@bubble.yonsei.ac.kr

The effect of Mn content on the damping capacity of γ austenitic phase for Fe-(17–28)%Mn alloys has been studied in relation to the stacking-fault energy (SFE), on the basis of the results of microstructural observations, thermodynamic calculations and vibration tests in a torsional mode. The damping capacity of γ austenite decreases with the increase in the Mn content. The decrease in density of stacking-faults in γ austenite and mobility of the stacking-fault boundary, on which the damping capacity of γ phase depends, is considered to be responsible for the deterioration of damping capacity. © 1999 Kluwer Academic Publishers

1. Introduction

Recently, Fe-high Mn alloys possessing the unique combination of a pronounced damping capacity and good mechanical properties, have been paid increasing attention as promising materials for frame of structures and components of precise machines [1–4]. The damping mechanism of the Fe-Mn alloys is thought to be an internal friction due to the movement of the various boundaries such as stacking-fault boundaries inside ε martensite and γ austenite, ε martensite variant boundaries, and γ/ε interfaces during vibration in an elastic region [5–9]. Accordingly, the total damping capacity of the Fe-Mn alloys (δ_{total}) can be given by:

$$\delta_{\text{total}} = \Delta \delta_{\text{v}} + \Delta \delta_{\text{sf}} + \Delta \delta_{\gamma} + \Delta \delta_{\gamma/\varepsilon} \tag{1}$$

where $\Delta \delta_v$ is the damping capacity due to the movement of ε martensite variant boundaries, $\Delta \delta_{sf}$ and $\Delta \delta_{\gamma}$ are the damping capacity by the migration of stackingfault boundaries inside ε martensite and γ austenite, respectively, and $\Delta \delta_{\gamma/\varepsilon}$ is the damping capacity associated with the movement of γ/ε interfaces.

The damping capacity shows a maximum value around 17%Mn, and decreases in higher Mn content [9]. By a systematic examination of the microstructural evolution and damping capacity with respect to Mn content, it has been found that the deterioration of the damping capacity above 17%Mn is principally ascribed to the decrease in both ε martensite content and mobility of γ/ε interface, which eventually leads to the decrease in contributions of $\Delta \delta_v$, $\Delta \delta_{sf}$ and $\delta_{\gamma/\varepsilon}$ to δ_{total} [9]. However, the influence of Mn content on the damping capacity of γ austenite ($\Delta \delta_{\gamma}$) remains unclear until now. Therefore, this study is intended to report the damping behavior of γ austenite as a function of the Mn content for Fe-(17–28)%Mn alloys, and to discuss the results in relation to the stacking-fault energy (SFE).

2. Experimental

Fe-17%Mn, Fe-20%Mn, Fe-23%Mn and Fe-28%Mn alloys (in weight), were prepared by high frequency induction melting in vacuum. The ingots were homogenized by keeping at 1473 K for 24 hours and hotrolled into bars with a diameter of 13 mm. From these bars, the specimens for damping measurement, dilatation test and microstructural observation were prepared by subsequent rolling and machining. Solution treatment was performed at 1323 K for 1 hour followed by a water quench.

Martensitic transformation temperatures (M_s , A_s and A_f) were measured by dilatometry. The chemical compositions and transformation temperatures of the experimental alloys are listed in Table I. Samples for optical microstructure were electro-polished in a solution of 90% CH₃COOH + 10% HClO₄, and etched with a 1.2% K₂S₂O₅ aqueous solution. Foils for transmission electron microscopy (TEM) were jet-polished in the 90% CH₃COOH + 10% HClO₄ solution, and were examined in a JEOL JEM-200CX operating at 200 kV.

In order to investigate the damping capacity of γ austenite single phase, the measurement of damping

^{*} Author to whom all correspondence should be addressed.

TABLE I Chemical compositions (wt %) and martensitic transformation temperatures (K) of experimental alloys

Alloy	Mn	С	Fe	Ms	$A_{\rm s}$	A_{f}
Fe-17% Mn Fe-20% Mn	17.2 20.2	0.019	Bal. Bal.	423 409	474 455	508 484
Fe-23% Mn Fe-28% Mn	23.3 27.8	0.018	Bal.	390 —	430	470

capacity was conducted at 438 K using a Föpple-Pertz type torsional pendulum apparatus [10], after heating the specimens to 533 K above A_f temperature for the complete $\varepsilon \rightarrow \gamma$ reverse transformation, and subsequent cooling to 438 K above M_s temperature to retain the reversed γ single phase. The damping test assembly and dimensions of the specimen are illustrated in Fig. 1. In this study, the damping capacity was measured in a range of 4×10^{-4} to 6×10^{-4} strain amplitude, and is evaluated in a logarithmic decrement (δ) defined as:

$$\delta = \ln(A_n / A_{n+1}) \tag{2}$$

where A_n and A_{n+1} represent the strain amplitudes of *n*th and (n + 1)th cycles in free decay.

3. Results and discussion

Fig. 2 represents a typical example of the optical microstructure at room temperature for Fe-(17–28)%Mn alloys in as-quenched state. As is known, the microstructures are distinctively characterized by γ austenite (the dark part) and thin plate ε martensite (the bright part). With the increase of Mn content, the amount of ε martensite appears to decrease and only γ single phase is observed in Fe-28% Mn alloy. Obviously, this is ascribed to the fact that Mn, an austenite stabilizing element, has a role to lower the M_s temperature of $\gamma \rightarrow \varepsilon$ martensitic transformation by decreasing the thermodynamic equilibrium temperature (T_0) between fcc and hcp phases (Table I) [11]. The change in damping capacity of γ single phase at 438 K with Mn content is given in Fig. 3. It is evident that the damping capacity becomes lower at high Mn contents in Fe-(17-28)%Mn alloys. The reasons for this behavior are as follows: (i) the decrease in density of stacking-faults in γ austenite: In the Fe-(17-28)% Mn alloys, the change in SFE with Mn content at 438 K can be calculated thermodynamically. In a regular solution model, the difference in chemical Gibbs energy between γ austenite and ε martensite $(\Delta G^{\gamma \to \varepsilon})$ for Fe-Mn binary alloy is given by:

$$\Delta G^{\gamma \to \varepsilon} = X_{\rm Fe} \Delta G_{\rm Fe}^{\gamma \to \varepsilon} + X_{\rm Mn} \Delta G_{\rm Mn}^{\gamma \to \varepsilon} + X_{\rm Fe} X_{\rm Mn} \Delta \Omega_{\rm FeMn}^{\gamma \to \varepsilon}$$
(3)

where X_{Fe} are X_{Mn} are the atomic fractions of Fe and Mn, respectively, $\Delta G_{Fe}^{\gamma \to \varepsilon}$ is the change in molar free

Figure 1 Schematic illustration showing damping test assembly and dimension of its specimen (mm).

Figure 2 Change in optical microstructure with Mn content in Fe-(17–28)%Mn alloys. (a) Fe-17%Mn alloy, (b) Fe-20%Mn alloy, (c) Fe-23%Mn alloy, and (d) Fe-28%Mn alloy.

Figure 3 Variation of damping capacity of γ austenite at 438 K with Mn content in Fe-(17–28)%Mn alloys.

energy between γ and ε phases in Fe and Mn, respectively and $\Delta \Omega_{\text{FeMn}}^{\gamma \to \varepsilon}$ is the interaction energy parameter for Fe and Mn.

In this study, $\Delta G_{\text{Fe}}^{\gamma \to \varepsilon}$ and $\Delta G_{\text{Mn}}^{\gamma \to \varepsilon}$ were formulated as a function of temperature by fitting the data reported by Blackburn *et al.* [12] and by Breedis *et al.* [13], respectively, whereas for $\Delta \Omega_{\text{FeMn}}^{\gamma \to \varepsilon}$, the equation previously reported by Ishida *et al.* [14] was adopted.

$$\Delta G_{\rm Fe}^{\gamma \to \varepsilon} (\rm J/mol) = -820.7 + 1.683T + 0.00226T^2$$
(4)

$$\Delta G_{\rm Mn}^{\gamma \to \varepsilon} (\rm J/mol) = 3972.4 - 2.97T + 0.0051T^2 \quad (5)$$

$$\Delta \Omega_{\text{FeMn}}^{\gamma \to \varepsilon} (\text{J/mol}) = -10836.6 + 22886.5 X_{\text{Mn}} \quad (6)$$

In accordance with a thermodynamic model of fault energy suggested by Olson and Cohen [15], the intrinsic SFE (γ_i) is expressed as:

$$\gamma_{\rm i} = 2\rho_{\rm A}\Delta G^{\gamma \to \varepsilon} + 2\sigma^{\gamma - \varepsilon} \tag{7}$$

where ρ_A is the planar packing density of a closepacked plane (in mol/area) and $\sigma^{\gamma-\varepsilon}$ is the coherent fcc-hcp interfacial energy. The values of ρ_A and $\sigma^{\gamma-\varepsilon}$ have been determined as 2.987×10^{-5} mol/m² for planar packing density of (111)_{fcc} plane [16] and 15 mJ/m² for transition metals [15], respectively. The calculated SFE at 438 K is plotted as a function of Mn content in Fig. 4. It is observed that the SFE increases from 27 to 54 mJ/m² with increasing from 17% Mn to 28% Mn.

Vassamillet [17] has reported that the stacking-fault probability (SFP, α) in fcc alloys is described as:

$$\alpha = (\mathbf{K} \cdot \rho) / (24\pi \cdot \gamma) \tag{8}$$

where ρ is the density of dislocation, γ is the SFE and K is the constant related to the elastic constant and lattice parameter. Assuming that the ρ is a constant after recrystallization, Equation 8 suggests that the lower the SFE, the higher the number of stacking-faults per unit area for Fe-(17–28)%Mn alloys. In order to test this, TEM examinations were made on the Fe-17%Mn and

Figure 4 Variation of SFE at 438 K with Mn content in Fe-(17–28)%Mn alloys.

Figure 5 TEM images of (a) Fe-17%Mn and (b) Fe-23%Mn alloys in as-quenched state.

Fe-23% Mn alloys in as-quenched state, respectively, and the result is given in Fig. 5. It is seen that the density of stacking-faults in γ matrix is higher in Fe-17% Mn alloy than in Fe-23% Mn alloy. Fig. 6 shows the correlation between inverse of SFE and damping capacity of γ austenite at 438 K. The damping capacity is low in high inverse of SFE (low SFP), indicating that the increase in Mn content decreases the damping value of γ austenite by decreasing the number of stacking-faults per unit area.

(ii) The deterioration of mobility of stacking-fault boundaries: In Fig. 6, it is observed that the damping capacity of γ phase does not depend linearly on the SFP, suggesting that the variation of the SFE with respect to Mn content may affect the mobility of stacking-fault boundary. Therefore, the relation between SFE and

Figure 6 Variation of damping capacity of γ austenite at 438 K with inverse of SFE in Fe-(17–28)%Mn alloys.

mobility of stacking-fault boundary will be theoretically discussed.

In the Fe-Mn based alloys with low SFE, a perfect dislocation in fcc matrix can be easily split into two Shockley partial dislocations, forming a stacking-fault. The equilibrium width between two partial dislocations constituting stacking-fault boundary (d_0) is given by [18]:

$$d_0 = (Gb^2/4\pi) \cdot (1/\gamma)$$
 (9)

where G is the shear modulus, b is the Burgers vector and γ is the SFE. Under an applied stress of τ on the (111) plane, the forces on the two partial dislocations with Burgers vectors b_1 and b_2 , respectively, are [18]:

$$\tau_1 = \tau b_1 \cos(\theta - \pi/6) \tag{10}$$

$$\tau_2 = \tau b_2 \cos(\theta + \pi/6) \tag{11}$$

where θ is the angle between *b* and τ . Equations 10 and 11 indicate that the values of τ_1 and τ_2 change significantly with respect to θ . When $\theta > 0$, τ_1 becomes higher than τ_2 and thus the stacking-fault would be extended wider, resulting in a new equilibrium width between two partial dislocations (d_0^*) . In this case, Equation 9 can be modified as follows:

$$(Gb_1^2/4\pi) \cdot (1/d_0^*) = \gamma - (\tau_1 - \tau_2)$$
 (12)

Substituting for $Gb_1^2/4\pi$ from Equation 9 into Equation 12, we obtain

$$(d_0^* - d_0)/(d_0) = (\tau_1 - \tau_2)/(\gamma - (\tau_1 - \tau_2))$$
(13)

Equation 13 indicates that the stacking-fault is easily extended when the SFE is low. Thus, the decrease in damping capacity of γ austenite by increasing Mn content, is attributed to the decrease in the mobility of the stacking-fault boundaries as well as the decrease in the number of stacking-faults per unit area.

4. Conclusions

The damping capacity of γ austenite single phase decreases with increasing Mn content in Fe-(17–28)%Mn alloys. The microstructural examinations and thermodynamic calculations presented in this paper have shown that the simultaneous decrease in the number of stacking-fault per unit area and the mobility of Shockley partial dislocations constituting stacking-fault boundaries with the increase of Mn content, is responsible for the deterioration of damping capacity.

Acknowledgements

The authors wish to acknowledge the financial support of the Korea Research Foundation in 1997. This work was also supported by the Postdoctoral fellowship from Yonsei University in 1997.

References

- C. S. CHOI, M. E. LEE, S. H. BAIK, Y. C. SON, J. C. KIM, J. H. JUN and Y. S. KO, US Patent no. 5290372 March (1994).
- 2. Idem. US Patent no. 5634990 April (1997).
- 3. C. S. CHOI, J. D. KIM and S. H. BAIK, Japan Patent no. 2036558 March (1996).

- 4. Idem. Korea Patent no. 107044 November (1996).
- 5. Y. K. LEE, J. H. JUN and C. S. CHOI, *Scripta Mater.* 35 (1996) 825.
- 6. J. H. JUN and C. S. CHOI, Scripta Mater. 38 (1998) 543.
- 7. J. H. JUN, S. H. BAIK, Y. K. LEE and C. S. CHOI, *Scripta Mater.* **39** (1998) 39.
- J. H. JUN, Y. K. LEE and C. S. CHOI, J. Kor. Inst. Met. Mater. 34 (1996) 1399.
- 9. J. H. JUN and C. S. CHOI, Mater. Sci. Eng. A252 (1998) 133.
- W. H. HATFIELD, G. STANFIELD and L. LOTHERHAM, Trans. N. E. Coast Inst. Engineers and Ship-builders 63 (1942) 273.
- 11. S. COTES, M. SADE and A. F. GUILLERMET, Metall. Trans. 26A (1995) 1957.
- 12. L. D. BLACKBURN, L. KAUFMAN and M. COHEN, Acta Metall. 13 (1965) 533.
- 13. J. F. BREEDIS and L. KAUFMAN, *Metall. Trans.* 2 (1971) 2359.
- 14. K. ISHIDA and T. NISHIZAWA, J. Jpn. Inst. Met. 36 (1972) 1238.
- 15. G. B. OLSON and M. COHEN, Metall. Trans. 7A (1976) 1897.
- 16. Y. K. LEE, PhD thesis, Yonsei University, 1997.
- 17. I. F. VASSAMILLET, J. Appl. Phys. 32 (1961) 778.
- 18. Y. Q. WANG, Z. WANG, J. H. YANG and L. C. ZHAO, Scripta Mater. 35 (1996) 1161.

Received 27 July 1998 and accepted 27 January 1999